Bài giảng Đại số Lớp 7 - Chương 4 - Bài 9: Nghiệm của đa thức một biến
Bạn đang xem tài liệu "Bài giảng Đại số Lớp 7 - Chương 4 - Bài 9: Nghiệm của đa thức một biến", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- bai_giang_dai_so_lop_7_chuong_4_bai_9_nghiem_cua_da_thuc_mot.ppt
Nội dung text: Bài giảng Đại số Lớp 7 - Chương 4 - Bài 9: Nghiệm của đa thức một biến
- §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1. Nghiệm của đa thức một biến: * Bài toán: Cho biết công thức đổi từ độ F sang Nước đóng băng tại 00C, nên thay C = 0 vào độ C là: công thức (1)Em ta có: hãy cho biết 5 5 nước(F−= đóng 32) băng 0 ở CF=−( 32) (1) 9 9 5 160 bao nhiêu độ C? Vậy khi nào P(x) = x- F−= 32 0 Hỏi nước đóng băng ở bao 99nhiêu độ F= 32 F? có giá trị bằng 0 ? Vậy nước đóng băng ở 32F. • Trong công thức trên, thay F = x ta có : 5 5 160 Px()= (x-32) = x- 9 9 9 • Ta có P(32) = 0. • Ta nói x = 32 là một nghiệm của đa thức P(x)
- §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1. Nghiệm của đa thức một biến: * Bài toán: Khái niệm: 5 160 * Xét đa thức P(x) = x - 99 Nếu tạiVậy x =khi a đanào thức số aP(x) được có giá trị • Ta có P(32) = 0. bằng gọi0 thì là ta nghiệm nói a (hoặc của x = đa a) là một nghiệm thứccủa đa P(x)? thức đó. • Ta nói x = 32 là một nghiệm của đa thức P(x) Hay x = a là nghiệm của đa thức P(x) khi P(a) = 0 Muốn kiểm tra một số a có phải là nghiệm Muốncủa đa thứckiểm P(x) tra không một sốta làma như sau: • Tính P(a)có phải =? (giá là nghiệm trị của P(x) của tại đax = a) • Nếu P(a)thức = 0 P(x) => ahay là nghiệm không của ta P(x) • Nếu P(a) 0làm => athế không nào? phải là nghiệm của P(x)
- §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1. Nghiệm của đa thức 2.Bài Ví tập: dụ: một biến: 1 1 a) xa)=−x =−là nghiệmcó phải của là P(x) nghiệm = 2x+1 của đa thức a (hoặc x = a) là nghiệm 2 2 của đa thức P(x) khi P(a) P(x) 11 = 2x +1 hay không ? = 0 Vì P − = 2. − + 1 = − 1 + 1 = 0 22 Muốn kiểm tra một số a có phải b) x b)= 1;Cho x =Q(x) -1 là = nghiệm x2 – 1 của đa thức là nghiệmVậy một của đa đa thức thức P(x) không Q(x) = x2 - 1 vì Q(1) = 0 ; Q(-1) = 0 (khácta làm như đa sau: thức không) Tại sao x = 1 và x = -1 là nghiệm của • Tính P(a) =? (giá trị của P(x) tại đa thức Q(x) ? xcó = a)thể có bao nhiêu c) G(x) = x2 + 1 2 • Nếu P(a)nghiệm? = 0 => a là nghiệm c) Cho đa thức G(x) = x + 1 của P(x) Không có giá trị nào của x làm • Nếu P(a) 0 => a không phải là choCó G(x) giá = trị 0 nào của x làm cho G(x) = 0 hay không? Tại sao? nghiệm của P(x) Vì x02 với mọi x x2 + 1 1 x2 + 1 0 với mọi x Vậy đa thức G(x) = x2 +1 không có nghiệm.
- §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1. Nghiệm của đa thức 2. Ví dụ: 1 một biến: a) x =− là nghiệm của P(x) = 2x+1 a (hoặc x = a) là 2 11 nghiệm của đa thức Vì P − = 2. − + 1 = − 1 + 1 = 0 P(x) khi P(a) = 0 22 Muốn kiểm tra một số a có phải b) x = 1; x = -1 là nghiệm của đa thức là nghiệm của đa thức P(x) không Q(x) = x2 - 1 vì Q(1) = 0 ; Q(-1) = 0 ta làm như sau: • Tính P(a) =? (giá trị của P(x) tại c) Đa thức G(x) = x2 + 1 không có nghiệm. x = a) • Nếu P(a) = 0 => a là nghiệm Chú ý: của P(x) • Nếu P(a) 0 => a không phải là * Một đa thức (khác đa thức không) có thể có nghiệm của P(x) một nghiệm, hai nghiệm, . hoặc không có nghiệm. * Người ta đã chứng minh được rằng số nghiệm của một đa thức (khác đa thức không) không vượt quá bậc của nó.
- §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1. Nghiệm của đa thức một biến: ?1 x = -2; x = 0; x = 2 có phải là nghiệm của a (hoặc x = a) là đa thức H(x) =− x 3 4x hay không? Vì sao? nghiệm của đa thức P(x) khi P(a) = 0 3 Muốn kiểm tra một số a có phải Bài 1: Cho đa thức H(x)=− x 4x là nghiệm của đa thức P(x) không ta làm như sau: Tính H(-2) ; H(0) ; H(1) ; H(2) • Tính P(a) =? (giá trị của P(x) tại 3 x = a) H(−2 )= (− 2 ) − 4.(− 2 ) = − 8+ 8= 0 • Nếu P(a) = 0 => a là nghiệm H(0 )= 03 − 4. 0 = 0 của P(x) 3 • Nếu P(a) 0 => a không phải là H(1)= 1 − 4.1 = − 3 nghiệm của P(x) H(2 )= ( 2 )3 − 4.( 2 ) = 8 − 8 = 0 2. Ví dụ: * Chú ý (SGK trang 47): Vậy x = -2; x = 0; x = 2 là nghiệm của đa thức H(x)=− x3 4x
- §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1. Nghiệm của đa thức một biến: ?2 Trong các số cho sau mỗi đa thức, số nào a (hoặc x = a) là là nghiệm của đa thức? nghiệm của đa thức 1 1 1 1 P(x) khi P(a) = 0 P(x)=+ 2x − 2 4 2 4 Muốn kiểm tra một số a có Q(x)= x2 − 2x − 3 phải là nghiệm của đa thức 3 1 -1 P(x) không ta làm như sau: 1 1 1 • Tính P(a) =? (giá trị của P − = 2. − + = 0 4 4 2 P(x) tại x = a) Q(3)= 32 − 2.3 − 3 = 0 • Nếu P(a) = 0 => a là 1 1 1 nghiệm của P(x) P = 2. + = 1 2 • Nếu P(a) 0 => a không 4 4 2 Q(− 1) = ( − 1) − 2.( − 1) − 3 = 0 phải là nghiệm của P(x) 1 1 1 3 2 P = 2. + = Q(1)= 1 − 2.1 − 3 = − 4 2 2 2 2 2. Ví dụ: 1 Vậy x =− là nghiệm Vậy 3 và -1 là nghiệm của đa 4 * Chú ý (SGK trang 47): 1 thức Q(x) = x2 – 2x – 3 của đa thức P(x)=+ 2x 2
- §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1. Nghiệm của đa thức ?2 Tìm nghiệm của đa thức một biến: 1 a)P(x)=+ 2x b) Q(x)=− x2 1 a (hoặc x = a) là 2 Cách 2: nghiệm của đa thức 1 P(x) khi P(a) = 0 Cho P(x) = 0 2x + = 0 2 Bài 2: Tìm x biết: Muốn kiểm tra một số a có 1 phải là nghiệm của đa thức a) 2x+= 0 b) x2 −= 1 0 P(x) không ta làm như sau: 2 1 2 • Tính P(a) =? (giá trị của 2x =− x = 1 P(x) tại x = a) 2 => x = 1 hoặc x = -1 • Nếu P(a) = 0 => a là 1 x =− nghiệm của P(x) 4 • Nếu P(a) 0 => a không Vậy P(x) có nghiệm Vậy 1 và -1 là nghiệm phải là nghiệm của P(x) 1 là x =− của đa thức Q(x). 4 2. Ví dụ: Nhận xét: Để tìm nghiệm của đa thức, ta có thể cho * Chú ý (SGK trang 47): đa thức đó bằng 0, rồi thực hiện như bài toán tìm x.
- §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1. Nghiệm của đa thức một biến: a (hoặc x = a) là nghiệm của đa thức 1 1) x = có phải là nghiệm của đa thức P(x) khi P(a) = 0 10 1 Muốn kiểm tra một số a có P(x)=+ 5x phải là nghiệm của đa thức 2 x P(x) không ta làm như sau: 2) Tìm nghiệm của đa thức Q( ) = 3x + 6 • Tính P(a) =? (giá trị của P(x) tại x = a) 3) Chứng tỏ rằng đa thức sau không có • Nếu P(a) = 0 => a là nghiệm A(x) = x4 + 2 nghiệm của P(x) • Nếu P(a) 0 => a không phải là nghiệm của P(x) 2. Ví dụ: * Chú ý (SGK trang 47):
- §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1 1 1. Nghiệm của đa thức một 1) x = có phải là nghiệm của đa thức P(x)=+ 5x biến: 10 2 2) Tìm nghiệm của đa thức Q(x) = 3x + 6 a (hoặc x = a) là nghiệm của đa thức 3) Chứng tỏ rằng đa thức A(x) = x4 + 2 không có nghiệm P(x) khi P(a) = 0 Muốn kiểm tra một số a có 1 1 1 1 1 phải là nghiệm của đa thức 1) Vì P = 5. + = + = 1 P(x) không ta làm như sau: 10 10 2 2 2 • Tính P(a) =? (giá trị của 1 P(x) tại x = a) Vậy không là nghiệm của đa thức P(x)=+ 5x • Nếu P(a) = 0 => a là 2 nghiệm của P(x) 4 • Nếu P(a) 0 => a không 2) Cho Q(x)=0 3) vì x0 với mọi x phải là nghiệm của P(x) 3x + 6 = 0 x4 + 2 2 3x = -6 => A(x) > 0 2. Ví dụ: x = -2 Vậy đa thức A(x) không có Vậy x = -2 là nghiệm * Chú ý (SGK trang 47): nghiệm. của đa thức Q(x)
- Học vui – Vui học ! Câu 1 Câu 2 Câu 3 Câu 4 A Luật chơi: “ĐI TÌM MẬT MÔ “MẬT MÔ là một cụm từ gồm 7 chữ cái. Để B tìm ra mật mã bạn lần lượt trả lời các câu hỏi từ 1 đến 4. Mỗi câu trả lời đúng, bạn tìm được một chữ cái của mật mã. Nếu tìm đúng mật mã thì bạn sẽ C nhận được phần thưởng. Nếu trả lời sai câu hỏi Luật chơi hoặc đoán không đúng mật mã thì bạn khác tham gia tiếp! D CHÚC CÁC EM MAY MẮN! Đ1 Ê2 N3 T4 R5 Â6 N7
- 1 Học vuiCácNghiệm – sốNghiệmVuiSố nào của a là họcđa nghiệm thứccủa ! đaC(x) của thức =đa 2x thức A(x)2 +1 P(x)B(x) là = bao khi = (xnhiêu3x – 1)(x+6) +là ? 2 Câu 1 Câu 2 Câu 3 Câu 4 1 1 A − P(x)= 0 1 − 6 2 1 B − P(x) 0 −1 Không có 3 nghiệm 1 1 C P(a)= 0 6 6 2 1 D P(a) 0 −6 3 Đ1 Ê2 N3 T4 R5 Â6 N7
- §9.§NGHIỆM9. NGHIỆM CỦA CỦA ĐAĐA THỨCTHỨC MỘT MỘT BIẾN BIẾN GHI NHỚ ➢ a là nghiệm của đa thức P(x) P(a) = 0 ➢ Để tìm nghiệm của đa thức một biến P(x): Cách 1: Kiểm tra lần lượt các giá trị của biến. Giá trị nào làm Qua chobài P(x) này = 0 thìta giá cần trị đó ghi là nghiệm nhớ của đa thức P(x).kiến thức gì? Cách 2: Cho P(x) = 0 rồi tìm x ➢ Một đa thức (khác đa thức không) có số nghiệm không vượt quá bậc của nó. Híng dÉn vÒ nhµ * Nắm vững phần ghí nhớ kiến thức. * Bài tập 54 ; 55 ; 56/ trang 48 SGK. 43 ; 44 ; 46 ; 47/ trang 15 + 16 SBT
- Chân thành cảm ơn thầy, cô giáo và em học sinh